Home
Class 11
MATHS
[" If "f(x)" and "g(x)" are two polynomi...

[" If "f(x)" and "g(x)" are two polynomials such that "h(x)=xf(x^(3))+x^(2)g(x^(6))" is divisible by "x^(2)+x+],[" then "],[[" (A) "f(1)=g(1)," (B) "f(1)=-g(1)],[" (C) "f(1)=g(1)!=0," (D) "f(1)=-g(1)!=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^(3))+x^(2)g(x^(6)) is divisible by x^(2)+x+1, then ( a )f(1)=g(1) (b) f(1)=1g(1)( ) h(1)=0 (d) all of these

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^3)+x^2g(x^6) is divisible by x^2+x+1, then f(1)=g(1) (b) f(1)=1g(1) h(1)=0 (d) all of these

If f(x) and g(x) are two polynomials such that the polynomial P(x)=f(x^(3))+g(x^(3)) is divisible by x^(2)+x+1 , then P(1) is equal to ........

Let g(x) and h(x) be two polynomials with real coefficients. If p(x) = g(x^(3)) + xh(x^(3)) is divisible by x^(2) + x + 1 , then

If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

Let f(x) and g(x) be polynomials with real coefficients.If F(x)=f(x^(3))+xg(x^(3)) is divisible by x^(2)+x+1, then both f(x) and g(x) are divisible by