Home
Class 10
MATHS
prove that : sin 48 sec 42 + cos 48 cose...

prove that : sin 48 sec 42 + cos 48 cosec 42 =2

Text Solution

Verified by Experts

LHS=`sin48/cos42+cos48/sin42`
`=(sin48sin42+cos48cos42)/(sin42cos42)`
`=cos(48-42)/(sin42cos42)`
`=(2cos6)/sin84`
`=2cos6/cos6`
`=2=RHS`
hence proved.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin48o sec42o+cos480cos ec42o=2

Prove that: sin48^@sec42^@+cos48^@\ cos e c\ 42^@=2

Prove that : (sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A

Show that: sin 42^(@)sec 48^(@)+cos 42^(@)cosec 48^(@)=2

Find the value of sin 48^(@) sec 42^(@)+cos48^(@) "cosec"42^(@).

Prove that : (cosec A - sin A) (sec A - cos A) sec^(2) A = tan A

Prove that (sin theta + cos theta )( cosec theta - sec theta ) = cosec theta. Sec theta -2 tan theta

Prove that : sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A.

sin48^(@)sec42^(@)+cos48^(@)csc42^(@)=

Prove that : (sin A - cos A) (1 + tan A + cot A) = (sec A)/ (cosec^(2) A) - (cosec A)/ (sec^(2) A)