Home
Class 14
MATHS
" On simplification "[((a)/(a^(a-b)))/(x...

" On simplification "[((a)/(a^(a-b)))/(x^((a)/(a)+b))-:((b)/(x^(b-a)))/(x^((b)/(b+1)))]_(0)^(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

On simplification [(x^((a)/(a-b)))/(x^((a)/(a+b)))-:(x^((b)/(b-a)))/(x^((b)/(b+a)))]^(a+b) reduces to

[{(x^(a(a-b)))/(x^(a(a+b)))}-:{(x^(b(b-a)))/(x^(b(b+a)))}]^(a+b)=1

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))*(x^(b))/(x^(a)))^(c)=1((x^(a+b))^(2)(x^(b+c))(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Simplify (x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^((c-a)))^((c+a)) where x ne 0 and x ne 1 .