Home
Class 12
MATHS
(dy)/(dx)=(cos^(2/4)(a+y))/(sin a)...

(dy)/(dx)=(cos^(2/4)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)