Home
Class 12
MATHS
[" 2.Prove that: "],[tan[(1)/(2)sin^(-1)...

[" 2.Prove that: "],[tan[(1)/(2)sin^(-1)(2x)/(1+x^(2))+(1)/(2)cos^(-1)(1-x^(2))/(1+x^(2))]=(2x)/(1+x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

prove that, 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))