Home
Class 12
MATHS
If A(costheta1,sintheta1),B(costheta2,si...

If `A(costheta_1,sintheta_1),B(costheta_2,sintheta_2) and C(costheta_3,sintheta_3),` then orthocenter of `DeltaABC` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/costheta .

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Prove that (1+costheta+sintheta)/(1-costheta+sintheta)=cot(theta/2)

Show that: |(sintheta,costheta),(-costheta,sintheta)| =1