Home
Class 11
MATHS
lim(x rarr0)((e^(4x)-1)/(x))...

lim_(x rarr0)((e^(4x)-1)/(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr 0)(e^(4x)-1)/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

The value of lim_(x rarr 0) ((e^(x)-1)/x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

Evaluate the following limit : lim_(x rarr 0) (e^(4x)-1)/x .

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)