Home
Class 11
MATHS
Solve sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x...

Solve `sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x+5.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

The number of solutions of sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5 is

If sqrt(3x^(2)-7x -30) - sqrt(2x^(2) -7x -5) = x -5 has alpha and beta as its roots, then the value of alpha beta is

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1