Home
Class 11
MATHS
f:R rarr R" be a positive increasing fun...

f:R rarr R" be a positive increasing function with "lim_(x rarr oo)(f(3x))/(f(x))=1." Then "lim_(x rarr oo)(f(2x))/(f(x))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f: R to R be a positive increasing function with Lt_(x to oo)(f(3x))/(f(x))=1 then Lt_(x to oo)(f(2x))/(f(x))=

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Let f: R rarr R be a positive increasing function with underset(xrarrinfty)lim(f(3x))/(f(x))=1, then underset(xrarrinfty)lim(f(2x))/(f(x)) =

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=