Home
Class 11
MATHS
[" 3.Find that the matrix "A=[[2,-1,1],[...

[" 3.Find that the matrix "A=[[2,-1,1],[-1,2,-1],[1,-1,2]]" satisfy the equation "A'-6A^(2)+],[qquad A+4I=0" ; Hence doduce "A^(-1)" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

4.Find the rank of the matrix A = [[4,2,-1,2],[1,-1,2,1],[2,2,-2,0]]

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

Show that, the matrix A = [(1,2,2),(2,1,2),(2,2,1)] satisfies the equation A^(2) - 4A - 5I_(3) = 0 and hence find A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A = [[2,-1,1],[-1,2,-1],[1,-1,2]] , Verify that A^3-6A^2+9A-4I=O and hence find A^-1 .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1)

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] , show that A^3 - 6A^2 + 5A + 11I = 0 . Hence find A^-1 .

Find the rank of the matrix A = [[0,1,2,-2],[4,0,2,6],[2,1,3,1]]

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .