Home
Class 12
MATHS
[" If "|z-2-bar(y)|=|z|sin((pi)/(4)-arg ...

[" If "|z-2-bar(y)|=|z|sin((pi)/(4)-arg x)," then locus of "x" is "],[[" 1) an ellipse "," 2) a circle "],[" 3) a parabola "," 4) a pairof straighttines "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If z = x + iy and arg ((z-1)/(z+1))=(pi)/(4) , then the locus of (x, y) is

If arg""(z-1)/(z+1)=(pi)/(4), show that the locus of z in the complex plane is a circle.