Home
Class 14
MATHS
" Prove that "(tan^(2)29-tan^(2)theta)/(...

" Prove that "(tan^(2)29-tan^(2)theta)/(1-tan^(2)20tan^(2)theta)=tan30tan theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (tan^2 20- tan^2 theta)/(1- tan^2 20 tan^2 theta)=tan30 tan theta

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan3thetatantheta .

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

Prove that (tan^2 (2theta)-tan^2 theta)/(1-tan^2 (2theta) tan^2 theta)=tan (3theta)tan theta

Prove that ((1+tan^(2)theta)sin^(2)theta)/(tan theta)=tan theta

(tan^(2)(2 theta)-tan^(2)theta)/(1-tan^(2)(2 theta)tan^(2)theta) is equal to-

tan4 theta=4tan theta(1-tan^(2)theta)/(1-6tan^(2)theta+tan^(4)theta)