Home
Class 12
MATHS
" 9."(4x+2)sqrt(x^(2)+x+1)...

" 9."(4x+2)sqrt(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(4)-1)/(x^(2)sqrt(x^(2)+x^(2)+1))dx=sqrt(x^(2)+(1)/(x^(2))+1)+C(sqrt(x^(2)+x^(2)+1))/(x^(2))+C(sqrt(x^(4)+x^(2)+1))/(x)+C(d) none of these

Lt_(x to oo) (sqrt(3+9x^(2))+sqrt(4x^(2)-1))/(sqrt(1+16x^(2))-sqrt(9x^(2)+2))=

The Range of sqrt(-x^(2))+sqrt(x^(2)-4x+9) is

lim_(x rarr2)((sqrt(x^(2)-4x+5)-1)((x+2)^(9/2)-512))/((x-2)(sqrt(x^(2)-4x+20)-4))

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .

underset(x to oo)(Lt)(""^(7)sqrt(x^(7)-1)+""^(5)sqrt(x^(5)+2)+""^(9)sqrt(x^(9)-2))/(""^(6)sqrt(x^(6)+1)+""^(7)sqrt(x^(7)+1)-""^(4)sqrt(x^(4)+2))=

lim_(x rarr oo)((sqrt(1+25x^(2))+sqrt(9x^(2)-1))/(sqrt(1+25x^(2))-sqrt(9x^(2)-1)))=

underset(x to oo)lim (sqrt(1+9x^(2))+sqrt(x^(2)-1))/(sqrt(1+9x^(2))-sqrt(x^(2)-1))=

underset(x to oo)lim (sqrt(1+25x^(2))+sqrt(9x^(2)-1))/(sqrt(1+25x^(2))-sqrt(9x^(2)-1))

Determine, if 3 is a root of the equation given below: sqrt(x^2-4x+3)+sqrt(x^2-9)=sqrt(4x^2-14 x+16)