Home
Class 11
MATHS
" Prove that: "lim(x rarr pi/4)(tan^(3)x...

" Prove that: "lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4)))=-4

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

lim_ (x rarr (pi) / (4)) (1-tan x) / (x- (pi) / (4))

lim_(x rarr pi)sgn[tan x]

lim_(x rarr pi/4)(sqrt(cos x)-sqrt(sin x))/(x-(pi)/(4))