Home
Class 12
MATHS
" (iii) "e^(2x)quad " [NCERT] "...

" (iii) "e^(2x)quad " [NCERT] "

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the following with respect to x. (i) (e^(2x) - 1)/(e^x) " " (ii) e^(3x)(e^(2x - 1)) .

y = e ^ (2x) + e ^ (3x)

int (e ^ (2x) -e ^ (- 2x)) / (e ^ (2x) + e ^ (- 2x)) dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

Let f(x) be a polynomial. Then, the second order derivative of f(e^x) is f"(e^x)e^(2x)+f'(e^x)e^x (b) f"(e^x)e^x+f'(e^x) (c) f"(e^x)e^(2x)+f"(e^x)e^x (d) f"(e^x)

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx .

Integrate the function: (e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))

Integrate (e^(2x) + e^(-2x) + 2)/(e^x)

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =