Home
Class 12
MATHS
y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]...

y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

Promotional Banner

Similar Questions

Explore conceptually related problems

[" 0.",int sin^(-1)sqrt((x)/(a+x))dx" is equal to "],[," 1) "(x+a)tan^(-1)sqrt((x)/(a))-sqrt(ax)+C],[" 3) "(x+a)cot^(-1)sqrt((x)/(a))-sqrt(ax)+C," 2) "(x+a)tan^(-1)sqrt((x)/(a))+sqrt(ax)+C]

If y =tan ^(-1) ((sqrt( a) -sqrt(x)) /( 1+sqrt( ax)) ) ,then (dy)/(dx)=

If y =tan ^(-1) ((sqrt( a) -sqrt(x)) /( 1+sqrt( ax)) ) ,then (dy)/(dx)=

y = tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(ax))), find dy/dx.

Differentiate tan^(-1)[(sqrt(x)+sqrt(a))/(1-sqrt(ax))] w.r.t. x.

If x=(sqrt(a+1)+sqrt(a-1))/(sqrt(a+1)-sqrt(a-1)) , using properties of proportion show that x^(2)-2ax+1=0

Answer the equation: int(dx)/(sqrt(ax+b)-sqrt(ax+c))

The value of f(0), so that f(x)= (sqrt(a^(2)-ax + x^(2))-sqrt(a^(2) + ax + x^(2)))/(sqrt(a +x)- sqrt(a-x)) becomes continuous for all x, is given by ………..