Home
Class 6
MATHS
In the figure, bar(DC)" || "bar(AB). If ...

In the figure, `bar(DC)" || "bar(AB)`. If `angleACB=40^(@)` and `angleCAD=30^(@)`, AC is the bisector of `angleDAB`, then find the angle of `angleADC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure, bar(AB)" || "bar(CD) and bar(AD)" || "bar(BC) . If angleABC=110^(@), angleACD=30^(@) , then find angleADC .

In the figure above, bar(AB) || bar(CD), angleBAE=30^(@) and angleCDE=35^(@) . If bar(AB) bot bar(BC) , then find angleAED .

In the following figure angleB=70^(@) and angleC=30^(@). BO and CO are the angle bisectors of angleABC and angleACB . Find the value of angleBOC :

In the following figure (not to scale), bar(AB) || bar(CD) . If angleBAE=25^(@) and angleDCE=30^(@) , then find angleAEC .

In the figure, bar(DE) |\| bar(BC), angle A=30^@, angle B=50^@ Find the values of x,y and z.

In the fig. AC>AB and AD is the bisector of angleA show that angleADC>angleADB

In DeltaABC , angleA=40^@ if bar(BO) and bar(CO) are the bisectors of angleB and angle C , then the value of angleBOC is

In the given figure, bar(AE) ||bar(CD) , AB=BC, and AE=CD. If bar(AC) bot bar(CD) and angleAEB=35^(@) , then find angleDBE .