Home
Class 9
MATHS
If x=a^(m+n), y=a^(n+1) and z=a^(l+m) ,...

If `x=a^(m+n), y=a^(n+1) and z=a^(l+m)` , prove that `x^m +y^n z^l=x^n y^l z^m`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a^(m+n),\ y=a^(n+l) and z=a^(l+m) , prove that x^m y^n z^l=x^n y^l z^m

If x=a^(m+n),y=a^(n+l) and z=a^(l+m), prove that x^(m)y^(n)z^(l)=x^(n)y^(l)z^(m)

If a=x^(m+n)\ y^l,\ b=x^(n+l)\ y^m and c=x^(l+m)y^n , prove that a^(m-n)\ b^(n-l)\ c^(l-m\ )=1

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

If a=x^(m+n)y^(1),b-x^(n+l)y^(m) and c=x^(l+m)y^(n), prove that a^(m-n)b^(n-1)c^(1-m)=1

If a^(x)=m,a^(y)=n and a^(2)=(m^(y)n^(x))^(z) show that xyz=1

If x/(lm - n^2) = y/(mn - l^2) = z/(nl - m^2) the value of lx + my +nz will be

Evaluate : ( x^(m + n ) times x^(n + l ) times x^( l + m ) ) / ( x^m times x^n times x^l )

Evaluate : ( x^(m + n ) times x^(n + l ) times x^( l + m ) ) / ( x^m times x^n times x^l )

If the m th, n th and p th terms of an AP and GP are equal and are x , y , z , then prove that x^(y-z) . y z^(x-y)=1 (1979, 3M)