Home
Class 11
MATHS
If |z-2-i|=|z|sin(pi/4-a r g z)| , wher...

If `|z-2-i|=|z|sin(pi/4-a r g z)|` , where `i=sqrt(-1)` ,then locus of z, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

if |z-1|=|z-i| then locus of z is

If |sqrt2z- 3+2i|= |z| |sin ((pi)/(4) + arg z_(1)) + i cos((3pi)/(4) - arg z_(1))| , where z_(1)=1+ (1)/(sqrt3)i , then locus of z is

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)