Home
Class 11
MATHS
If omega(!= 1) is a cube root of unity,...

If `omega(!= 1)` is a cube root of unity, and `(1+omega)^7=A=B omega.` Then `(A,B)` equals (a) `(0,1)` (b) `(1,1)` (c) `(2,0)` (d) `(-1,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega(!=1) is a cube root of unity, and (1+omega)^3= A + B omega . Then (A, B) equals to ?

If (omega ne 1) is a cube root of unity and (1+omega)^(7)=A+Bomega . Then (A,B) equals

If omega(ne1) is a cube root of unity , and (1+omega)^7=A+Bomega . Then (A,B) rquals :

If omega(ne1) is a cube root of unity and (1+omega)^7=A+B_omega then (A,B) equals

If omega(!=1) is a cube root of unity, and (1""+omega)^7=""A""+""Bomega . Then (A, B) equals (i.) (0, 1) (ii.) (1, 1) (iii.) (1, 0) (iv.) (-1,1)

omega(!=1)omega(!=1) is a cube root of unity,and (1+omega)^(7)=A+B omega Then (A,B) equals (1)(0,1)(2)(1,1)(3)(1)(-1,1)

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity and (omega-1)^(7)=A+B omega then find the values of A and B^(@)