Home
Class 11
MATHS
Theorem 1 :If A+B+C=pi then prove that s...

Theorem 1 :If `A+B+C=pi` then prove that `sin2A+sin2B+sin2C=4sinAsinBsinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

If A+B+C=0^(@) then prove that sin2A+sin2B+sin2C=-4sin A sin B sin C

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=180^(@), then prove that sin2A+sin2B+sin2C=4sin A sin B sin C

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.