Home
Class 11
MATHS
1+(1+2)+(1+2+3)+(1+2+3+4)*cdots" to nums...

1+(1+2)+(1+2+3)+(1+2+3+4)*cdots" to nums."

Promotional Banner

Similar Questions

Explore conceptually related problems

If H_(n) =1+(1)/(2)+ cdots + (1)/(n) then value of S_(n) =1 + (3)/(2) + (5)/(3) +cdots + (2n-1)/(n) is

If the sum to infinity of the series 3+(3+d) (1)/(4) +(3+2d) (1)/(4^(2))+cdots oo is (44)/(9) then find d.

Find the sum of the series (1^(3))/(1) + (1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+ cdots up to n terms .

Locate the points: (1, 1), (1, 2), (1, 3), (1, 4) (2, 1), (2, 2), (2, 3), (2, 4) (1, 3), (2, 3), (3, 3), (4, 3) (1, 4), (2, 4), (3, 4), (4, 4)

Find the sum of the series 1.n + 2 .(n-1) + 3.(n-2) + cdots + ( n-1) .2 + n.1.

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+cdots "to" oo = (pi^(2))/(6) then (1)/(1^(2)) +(1)/(3^(2))+(1)/(5^(2))+cdots equals

If (1.2+2.3+3.4+cdots "to n terms")/(1+2+3+cdots "to n terms") =6 find n.

Find the sum to n terms of the series 1//(1xx2) + 1//(2xx3) + 1//(3xx4) + cdots + 1//n(n+1).

Find the sum 1^(2) + (1^(2)+2^(2))+ (1^(2)+2^(2)+3^(2))+ cdots up to 22 nd term.