Home
Class 11
MATHS
[" 16.Aff "(1-x+x^(2))^(4)=1+p(1)x+p(2)x...

[" 16.Aff "(1-x+x^(2))^(4)=1+p_(1)x+p_(2)x^(2)+...+p_(8)x^(8),vec q_(1)," in for "f(x_(1))f(x_(1))f_(1)(x_(1)-1)],[p_(2)+p_(4)+p_(6)+p_(8)=40]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+....+p_(n)x^(n) then (p_(0)-p_(2)+p_(4)-p_(6)+....)/(p_(1)-p_(3)+p_(5)-p_(7)+......)=

If (1-x+x^(2))^(4)=1+P_(1)x+P_(2)x^(2)+P_(3)x^(3)+...+P_(8)x^(8) , then prove that : P_(2)+P_(4)+P_(6)+P_(8)=40 and P_(1)+P_(3)+P_(5)+P_(7)=-40 .

If (1-x+x^(2))^(4)=1+P_(1)x+P_(2)x^(2)+P_(3)x^(3)+...+P_(8)x^(8) , then prove that : P_(2)+P_(4)+P_(6)+P_(8)=40 and P_(1)+P_(3)+P_(5)+P_(7)=-40 .

if (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+--+p_(n)x^(n) the value of p_(1)-p_(3)+p_(5)+...

If (1-x+x^(2))^(4)=1+P_(1)x+P_(2)x^(2)+P_(3)x^(3)+…….+P_(8)x^(8), then prove that : P_(2)+P_(4)+_(6)+P_(8)=40 " and "P_(1)+P_(3)+P_(5)+P_(7)=-40

If each pair ofthe following three equations x: x^(2)+p_(1)x+q_(1)=0.x^(2)+p_(2)x+q_(2)=0x^(2)+p_(3)x+q_(3)=0, has exactly one root common, prove that (p_(1)+p_(2)+p_(3))^(2)=4(p_(1)p_(2)+p_(2)p_(3)+p_(3)p_(1)-q_(1)-q_(2)-q_(3)]

IF 25025 = p_(2)^(x1),p_(2)^(x2),p_(3)^(x3),p_(4)^(x4) find the values of p_(1), pz, p_(3), p_(4) and x_(1), x_(2), x_(3), x_(4) .