Home
Class 12
MATHS
If there are three square matrix A, B, C...

If there are three square matrix A, B, C of same order satisfying the equation `A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2))`, then prove that `det .(B-C) = 0, n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-2))), n in N .

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-2))), n in N .

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-1))), n in N .

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-1))), n in N .

If A ,B,C are three non-singular matrices of same order and |A| is a function of x and A^(2)=A^(-1),B=A^(2^(n)),C=A^(2^(n-2)) , n in N .If f'(x)=det(B-C) and f(7)=5 ,then the value of f(5) is

Let A;B;C be square matrices of the same order n. If A is a non singular matrix; then AB=AC then B=C