Home
Class 12
CHEMISTRY
|[k(a),k^(2)+a^(2),1],[k(l),k^(2)+a^(2),...

|[k_(a),k^(2)+a^(2),1],[k_(l),k^(2)+a^(2),1],[k_(c),k^(2)+c^(2),1]|

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

For and elementary reaction 2A underset(k_(2))overset(k_(1))hArr B , the rate of disappearance of A iss equal to (a) (2k_(1))/(k_(2))[A]^(2) (b) -2k_(1)[A]^(2) + 2k_(2)[B] ( c) 2k_(1)[A]^(2) - 2k_(2)[B] (d) (2k_(1) - k_(2))[A]

For and elementary reaction 2A underset(k_(2))overset(k_(1))hArr B , the rate of disappearance of A iss equal to (a) (2k_(1))/(k_(2))[A]^(2) (b) -2k_(1)[A]^(2) + 2k_(2)[B] ( c) 2k_(1)[A]^(2) - 2k_(2)[B] (d) (2k_(1) - k_(2))[A]

u_(n) = |{:(1,,k,,k),(2n,,k^(2)+k+1,,k^(2)+k),(2n-1,,k^(2),,k^(2)+k+1):}| and sum_(n=1)^(k) u_(n)=72 then k=

If I_(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + k +1)| and sum_(n=1)^(k) I_(n) = 72 , then k =

60.A consecutive reaction occurs with two equilibria which co-exist together P(k_(1))/(k_(2) Q (k_(3))/(k_(4) R Where k_(1) , k_(2) , k_(3) and k_(4) are rate constants.Then the equilibrium constant for the reaction P harr R is (1) (k_(1)*k_(2)) / (k_(3)*k_(4) ) (2) (k_(1)*k_(4)) / (k_(2)k_(3) ) (3) k_(1) * k_(2) * k_(3)*k_(4) (4) (k_(1)*k_(3)) / (k_(2)k_(4)) ]]

If (k+(1)/(k))^(2)=16 , then k^(2)+(1)/(k^(2))=