Home
Class 12
MATHS
" If "y=log(5)(log(5)x)+10^(3log(10)x),"...

" If "y=log_(5)(log_(5)x)+10^(3log_(10)x)," show that "(dy)/(dx)=(1)/(x log_(5)x(log_(e)5)^(2))+3x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

5^(log_(10)x)=50-x^(log_(10)5)

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx) .

y=log_(2)[log_(3)(log_(5)x)] ,then x=

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If y = log_(5) (log_(5)x) then dy/dx =

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)