Home
Class 12
MATHS
" aff "A=[[1,1,1]]," and fers affect "A^...

" aff "A=[[1,1,1]]," and fers affect "A^(n)=|[3^(n),3,3],[^n-1,3^(n-1),3^(n-1)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[1,1,1],[1,1,1],[1,1,1]] , prove that A^n = [[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N

If A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]] , prove that A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N.

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n inN

If A=[111111111], then prove that A^(n)=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)] for every positive integer n

If A=[[1 , 1, 1],[ 1, 1, 1],[ 1, 1 , 1]] , prove that A^n=[[3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1) , 3^(n-1), 3^(n-1)]] n in N .

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

If A,=[[1,1,11,1,11,1,1]]A^(n)=,[[3^(n-1),1]]3^(n-1),3^(n-1),3^(n-1)3^(n-1),3^(n-1),3^(n-1)]]