Home
Class 11
MATHS
|[y+z,x,y],[z+x,z,x],[x+y,y,z]|=(x+y+z)(...

|[y+z,x,y],[z+x,z,x],[x+y,y,z]|=(x+y+z)(x-z)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |[y+z,x,y],[z+x,z,x],[x+y,y,z]|=k(x+y+z)(x-z)^2 then k is equal to

y+z,x,yz+y,z,xx+y,y,z]|=(x+y+z)(x-z)^(2)

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

By using properties of determinants, prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|=2(x+y+z)^3

Prove that : |[x+y+z,-z,-y],[-z, x+y+z, -x],[-y,-x,x+y+z]|= 2(x+y)(y+z)(z+x)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3