Home
Class 12
MATHS
lim(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+...

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

lim_(n rarr oo)((1)/(1.4)+(1)/(4.7)++(1)/((3n-2)(3n+1))))

lim_(n rarr oo)(-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to a.-(3)/(4)b.0 if n is even c.-(3)/(4) if n is odd d.none of these

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))