Home
Class 12
MATHS
(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))...

(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I Range of f(x) = x((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))) + x^(2) + x^(4) is not R. Statement II Range of a continuous evern function cannot be R. (a)Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I (b)Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I

int(e^(x)-e^(-2x))/(e^(2x)+e^(-2x))dx

If int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A ln |(e^(x)+e^(-x)+B)/(e^(x)+e^(-x)-B)|+c then AB=

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

Find the value of (d)/(dx)(x(e^(x)+e^(4x))/(e^(x)+e^(-2x))) .

(e^(2x)+2e^(x)+1)/(e^(x))

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

If f:[0,oo]toR is the function defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)), then check whether f(x) is injective or not.