Home
Class 11
MATHS
" Pore that "1+2+3+...+n<((2n+1)^(2))/(8...

" Pore that "1+2+3+...+n<((2n+1)^(2))/(8)" for all "n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove by PMI that 1.2+2.3+3.4+....+n(n+1)=((n)(n+1)(n+2))/(3),AA n in N

Prove that 1^1*2^2*3^3....n^nle((2n+1)/3)^((n(n+1))/2) .

Using the principle of mathematical induction prove that : 1. 3+2. 3^2+3. 3^3++n .3^n=((2n-1)3^(n+1)+3)/4^ for all n in N .

Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Using the principle of mathematical induction prove that : the 1.3+2.3^(2)+3.3^(3)++n.3^(n)=((2n-1)3^(n+1)+3)/(4) for all n in N.

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .