Home
Class 12
MATHS
f(x)=lim(n rarr oo)(1)/(x^(2n)+1)...

f(x)=lim_(n rarr oo)(1)/(x^(2n)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=lim_(n rarr oo)((x-1)^(2n)-1)/((x-1)^(2n)+1) is discontinuous at (A)x=0 only (B)x=2 only ( textrmC ) x=0 and 2(D) none of these

f(x)=lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))..........(1+x^(2^(n-1))) then

Discuss the continuity of f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n+1))

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

The function f(x)=lim_(n rarr oo)(x^(^^)(2n)-1)/(x^(^^)(2n)+1)^(-) is identical with the function

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1),x in R, the the the points where f(x) is not continuous are

Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)

f(x) = lim_(n rarr oo) ((x-1)^(2n) - 1)/((x-1)^(2n) + 1) is discontinuous at (A) x=0 only (B) x=2 only (C) x=0 and 2 (D) none of these

If f(x)=lim_(n rarr oo)(1+x)^(n) comment on the continuity of f(x)atx=0 and explain lim_(x rarr0)(1+x)^((1)/(x))=e