Home
Class 11
MATHS
If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1...

If ` f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):}`
for what value (s) of a does `underset(xrarra)"lim"f(x)` exists?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

If f(x)={{:(|x|+1",",xlt0),(0",",x=0),(|x|-1",",xgt0):} For what value(s) of a does lim_(xrarra)f(x) exists?

If f(x)={{:(|x|+1",",xlt0),(0",",x=0),(|x|-1",",xgt0):} For what value(s) of a does lim_(xrarra)f(x) exists?

If f(x)={{:(|x|+1",",xlt0),(0",",x=0),(|x|-1",",xgt0):} For what value(s) of a does lim_(xrarra)f(x) exists?

If f(x)={{:(|x|+1","xlt0),(0","x=0),(|x|-1","xgt0):} For what value (s) of a does lim_(xtoa)f(x) exist?

If f(x)={(|x|+1,x 0):} For what value (s) of a does lim_(x rarr a)f(x) exists?

If f(x)= {(absx + 1 , x lt 0),(0 , x = 0),(absx - 1 , x gt 0) :} , for what value(s) of a does lim_(x rarr 0) f(x) exist ?

Let f(x)= {(|x|+1,",", x 0.):} For what value(s) of ‘a’ does lim_(x rarr a) f(x) exist ?