Home
Class 6
MATHS
[" If "x+y+z=1],[" then "1-3x^(2)-3y^(2)...

[" If "x+y+z=1],[" then "1-3x^(2)-3y^(2)-3z^(2)+2x^(3)+2y^(3)+2z^(3)" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=0 , then [(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equals

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

The value of the expression ((x ^(2) - y ^(2)) ^(3) + ( y ^(2) - z ^(2)) ^(3) + (z ^(2) - x ^(2)) ^(3))/((x - y) ^(3) + ( y - z) ^(3) + (z - x ) ^(3)) is

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

If x+y+z=xyz , prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) cdot(3y-y^3)/(1-3y^2)cdot(3z-z^3)/(1-3z^2)