Home
Class 12
MATHS
[f(a=b+1-v)=f(x)],[(1)/(a+b)int(a)^(b)ti...

[f(a=b+1-v)=f(x)],[(1)/(a+b)int_(a)^(b)times(sin x+4(m+1))dx]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

From mean value theorem, f(b)-f(a) = (b-a)f^(1)(x_(1)), a lt x_(1) lt b if f(x) = ( 1)/( x) then x_(1) =

From mean value theoren :f(b)-f(a)=(b-a)f'(x_(1));a

If f((ax+b)/(x-a))=x, then f^(-1)(x)= (a) x (b) (bx+a)/(x-b)( c) f(x)

If a, b (altb) be the points of discontinuity of function f(f(f(x))) , where f(x)=1/(1-x),x!=1 , then int_a^b f(x)/(f(x)+f(1-x))dx= (A) 0 (B) 1/2 (C) 1 (D) 2

If a, b (altb) be the points of discontinuity of function f(f(f(x))) , where f(x)=1/(1-x),x!=1 , then int_a^b f(x)/(f(x)+f(1-x))dx= (A) 0 (B) 1/2 (C) 1 (D) 2

If the functions f(x) and g(x) are continuous on [a,b] and differentiable on (a,b) then in the interval (a,b) the equation |{:(f'(x),f(a)),(g'(x),g(a)):}|=(1)/(a-b)=|{:(f(a),f(b)),(g(a),g(b)):}|

If the functions f(x) and g(x) are continuous on [a,b] and differentiable on (a,b) then in the interval (a,b) the equation |{:(f'(x),f(a)),(g'(x),g(a)):}|=(1)/(a-b)=|{:(f(a),f(b)),(g(a),g(b)):}|