Home
Class 14
MATHS
" If "b+ic=(1+a)z" and "a^(2)+b^(2)+c^(2...

" If "b+ic=(1+a)z" and "a^(2)+b^(2)+c^(2)=1," then "(1+iz)/(1-iz)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If z(1+a)=b+icanda^(2)+b^(2)+c^(2)=1 then [(1+iz)/(1-iz)=(a+ib)/(1+c) b.(b-ic)/(1+a)c(a+ic)/(1+b) d.none of these

If a,b,c are real numbers and z is a complex number such that,a^(2)+b^(2)+c^(2)=1 and b+ic=(1+a)z then (1+iz)/(1-iz) equals.(a) (b-ic)/(1-ia) (b) (a+ib)/(1+c) (c) (1-c)/(a-ib)( d) (1+a)/(b+ic)

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If |z+2i|<=1 and z_(1)=6-3i then the maximum value of |iz+z_(1)-4| is equal to

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If |(1-iz)/(z-i)|=1 find the locus of z