Home
Class 11
MATHS
hArr y=(sqrt(x)+(1)/(sqrt(x)))^(2)...

hArr y=(sqrt(x)+(1)/(sqrt(x)))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), then , x(x+1)^(2)y_(2)+(x+1)^(2)y_(1) is

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

The value of f(x,y)=((4sqrt(x^(3)y)-4sqrt(x^(3)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/(4sqrt(xy)))^(-2)(1+2sqrt((y)/(x))+(y)/(x))^((1)/(2)) when x=9,y=0.04

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

Simplify : (a) sqrt(y+sqrt(2xy-x^(2))) + sqrt(y-sqrt(2xy-x^(2))) (b) (x+sqrt(x^2-1))/(x-sqrt(x^(2)-1)) -(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))