Home
Class 12
MATHS
y=x^(sinx)+(sinx)^(cosx),t h e n f i n d...

`y=x^(sinx)+(sinx)^(cosx),t h e n f i n d(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(sinx)+(sinx)^(cosx) then find (dy)/(dx) .

If y=x^(sinx)+(sinx)^(cosx) , then find (dy)/(dx) .

If y=(sinx)^(cosx) , then find (dy)/(dx) .

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

(i) If y=(cosx)^(sinx) , then find (dy)/(dx) . (ii) If y=(sinx)^(sinx) , then find (dy)/(dx) .

If y=(sinx+cosx)/(sinx-cosx) , then value of (dy)/(dx) at x=0 is:

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx), if it exists, where pi/2

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx), if it exists, where pi/2

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e n find (dy)/(dx), if it exists, where pi//2