Home
Class 12
MATHS
Find the maximum and minimum value of th...

Find the maximum and minimum value of the sum of the squares of the roots of the equatiorn `x^2 + (3 sin phi-4 )x +1/2cos^2 phi = 0`. For what value of `phi` in `(-pi,pi)` these extreme values occur.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)+(sin phi-1)x-(1)/(2)cos^(2)phi=0(phi in R) then the maximum value of the sum of the squares of the roots is.

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

If sin (7 phi+9^(@))=cos2phi , find a value of phi .

int_(0)^(pi//2) sqrt(sin phi) cos^(5) phi d phi .

The absolute value of minimum value of the determinant |(sin theta,1,0), (1,cos phi , -cos theta),(sin phi, 0,1)| is

Find int( (3 sin phi-2) cosphi)/(5-cos ^2 phi-4 sin phi) d phi

If theta+phi=pi/3 , then for what value of a sin theta . Sin phi is maximum ?

If theta and phi are acute angles, sin theta=1/2, cos phi= 1/3 , then the value of (theta + phi) is: