Home
Class 12
MATHS
The value of lim(x->oo) ((2^(x^n))^(1/(e...

The value of `lim_(x->oo) ((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x))))/(x^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

The value of lim_(x rarr oo)(x^(n))/(e^(x))

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

lim_(x rarr oo)((2^(x^(n)))^(e^((1)/(T)))-(3^(x^(n)))^((1)/(e^(bar(T)))))/(x^(n))

The value of lim_(x rarr oo)(1+(1)/(x^(n)))^(x),n>0 is

lim_(x->oo)(1-x+x.e^(1/n))^n