Home
Class 12
MATHS
lim(x->oo)((x+5) tan^-1 (x +5)-(x +1)tan...

`lim_(x->oo)((x+5) tan^-1 (x +5)-(x +1)tan^-1(x+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

("lim")_(xtooo)"{"(x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to (a) pi (b) 2pi (c) pi/2 (d) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

lim_(x to 0)(x)/(tan^(-1)2x) is equal to