Home
Class 11
MATHS
If the line segment joining the point A(...

If the line segment joining the point `A(a, b) and B(c, d)` subtends an angle `theta` at the origin.Prove that `cos theta=(ac+bd)/sqrt((a^2+b^2).(c^2+d^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : cos theta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : costheta=(a c+b d)/(sqrt((a^2+b^2)(c^2+d^2)))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : costheta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : theta=(a c+b d)/((a^2+b^2)(c^2+d^2))

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))

If the line segment joining the points A(a,b) and B (c, d) subtends a right angle at the origin, show that ac+bd=0

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle theta at the origin , then the value of costheta is a) (ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) b) (ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2))) c) (ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) d) (ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))