Home
Class 12
MATHS
Let theta1 and theta2 (wheretheta1 lt th...

Let `theta_1` and `theta_2` (where`theta_1 lt theta_2)` are two solutions of `2cot^2theta – 5/(sin theta) + 4 = 0, theta in [0, 2pi)` then `int_(theta_1)^(theta_2) cos^2 3theta d theta` is equal to

A

`2pi/3`

B

`pi/3`

C

`2pi/9`

D

`pi/6`

Text Solution

Verified by Experts

The correct Answer is:
B

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

int _(0) ^(pi) sin ^(2) theta cos theta d theta

If theta_(1) and theta_(2) be respectively the smallest and the largest values of theta in (0, 2pi)-(pi) which satisfy the equation, 2cot^(2)theta-(5)/(sintheta)+4=0 , then int_(theta_(1))^(theta_(2))cos^(2)3thetad theta is equal to :

If 2cos theta+sin theta=1(theta!=(pi)/(2)) then 7cos theta+6sin theta is equal to

If 2 cot theta =3 , then what is (2 cos theta -sin theta)/(2 cos theta + sin theta) equal to ?

If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

I=int_(0)^( pi/4)(sin2 theta)/(sin^(2)theta+cos^(4)theta)d theta

if 7 cos^(2) theta + 3 sin^2 theta = 4 and 0 lt theta lt (pi)/(2) , then find the value of cot theta

int_(0)^(pi//2) (cos theta)/(sqrt(4-sin^(2)theta))d theta is equal to