Home
Class 12
MATHS
If z = (3+isintheta)/(4-icostheta) is pu...

If z = `(3+isintheta)/(4-icostheta)` is purely real and `theta in (pi/2,pi)` ,then `arg(sintheta + i costheta)` is -

A

`pi- tan^(-1) (4/3)`

B

`-tan^(-1) (3/4)`

C

`-tan^(-1) (4/3)`

D

`pi- tan^(-1) (3/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \( z = \frac{3 + i \sin \theta}{4 - i \cos \theta} \) and determine the conditions under which it is purely real. We will then find the argument of \( \sin \theta + i \cos \theta \). ### Step 1: Rationalize the denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(3 + i \sin \theta)(4 + i \cos \theta)}{(4 - i \cos \theta)(4 + i \cos \theta)} \] ### Step 2: Calculate the denominator The denominator simplifies as follows: \[ (4 - i \cos \theta)(4 + i \cos \theta) = 4^2 - (i \cos \theta)^2 = 16 + \cos^2 \theta \] ### Step 3: Calculate the numerator Now, we calculate the numerator: \[ (3 + i \sin \theta)(4 + i \cos \theta) = 3 \cdot 4 + 3 \cdot i \cos \theta + i \sin \theta \cdot 4 + i^2 \sin \theta \cos \theta \] \[ = 12 + 3i \cos \theta + 4i \sin \theta - \sin \theta \cos \theta \] \[ = (12 - \sin \theta \cos \theta) + i(3 \cos \theta + 4 \sin \theta) \] ### Step 4: Combine the results Now we can write \( z \) as: \[ z = \frac{(12 - \sin \theta \cos \theta) + i(3 \cos \theta + 4 \sin \theta)}{16 + \cos^2 \theta} \] ### Step 5: Determine when \( z \) is purely real For \( z \) to be purely real, the imaginary part must be zero: \[ 3 \cos \theta + 4 \sin \theta = 0 \] ### Step 6: Solve for \( \tan \theta \) From the equation \( 3 \cos \theta + 4 \sin \theta = 0 \), we can rearrange it to find: \[ 4 \sin \theta = -3 \cos \theta \implies \tan \theta = -\frac{3}{4} \] ### Step 7: Find the argument of \( \sin \theta + i \cos \theta \) We need to find the argument of \( \sin \theta + i \cos \theta \). The argument is given by: \[ \arg(\sin \theta + i \cos \theta) = \tan^{-1}\left(\frac{\cos \theta}{\sin \theta}\right) \] ### Step 8: Substitute \( \tan \theta \) Since \( \tan \theta = -\frac{3}{4} \), we can find \( \cot \theta \): \[ \cot \theta = -\frac{4}{3} \] ### Step 9: Determine the quadrant Given that \( \theta \in \left(\frac{\pi}{2}, \pi\right) \), \( \sin \theta > 0 \) and \( \cos \theta < 0 \). Therefore, \( \sin \theta + i \cos \theta \) lies in the second quadrant. ### Step 10: Final argument calculation The argument in the second quadrant is given by: \[ \arg(\sin \theta + i \cos \theta) = \pi - \tan^{-1}\left(\frac{4}{3}\right) \] Thus, the final answer is: \[ \arg(\sin \theta + i \cos \theta) = \pi - \tan^{-1}\left(\frac{4}{3}\right) \]

To solve the problem, we need to analyze the expression \( z = \frac{3 + i \sin \theta}{4 - i \cos \theta} \) and determine the conditions under which it is purely real. We will then find the argument of \( \sin \theta + i \cos \theta \). ### Step 1: Rationalize the denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(3 + i \sin \theta)(4 + i \cos \theta)}{(4 - i \cos \theta)(4 + i \cos \theta)} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3+2i sintheta)/(1-2i sintheta) is a real number and 0lt theta lt 2pi , then theta is a. pi \ b. pi/2 \ c. pi/3 \ d. pi/6

If z is purely real; then arg(z)=0 or pi

Find real theta in (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely real .

Prove that sintheta (1 + Costheta) is the greatest at theta=pi/3

Which of the following is true for z=(3+2i sin theta)(1-2sin theta)wherei=sqrt(-1)?( a) z is purely real for theta=n pi+-(pi)/(3),n in Z (b)z is purely imaginary for theta=n pi+-(pi)/(2),n in Z(c)z is purely real for theta=n pi,n in Z(d) none of these

If I=[(1 ,0),( 0, 1)] , J=[(0, 1),(-1 ,0)] and B=[(costheta,sintheta),(-sintheta,costheta)] , then B equals a) Icostheta+Jsintheta (b) Isintheta+Jcostheta (c) Icostheta-Jsintheta (d) Icostheta+Jsintheta

Prove that: sqrt((1-sintheta)/(1+sintheta))= sec theta- tan theta when (-pi/2) < theta < pi/2 and -sec theta+tan theta when pi/2< theta< (3pi)/2