Home
Class 11
MATHS
sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)...

sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(0), so that the function f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x, given by a^((3)/(2))( b) a^((1)/(2))(c)-a^((1)/(2))(d)-a^((3)/(2))

Solution of (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=(4)/(2-sqrt(3))are(A)1+-sqrt(3),1(B)1+-sqrt(2),1(C)1+-sqrt(3),2(D)1+-sqrt(2),2

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

int(2x^(2)+3x+3)/(sqrt(2x^(2)+2x+2))dx=ax sqrt(x^(2)+2x+2)+b ln|(x+1)+sqrt((x+1)^(2))+1|+

Differentiate sin^(-1)(2ax sqrt(1-a^(2)x^(2))) with respect to sqrt(1-a^(2)x^(2)), if -1/(sqrt(2))

(1)/(sqrt(ax-x^(2)))

The value of lim_(xrarr0)(sqrt(a^2-ax+x^2)-sqrt(a^2+ax+x^2))/(sqrt(a+x)-sqrt (a-x)) , is

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is