Home
Class 12
MATHS
" (a) "A=faft((pi)/(4))|[1,omega,omega^(...

" (a) "A=faft((pi)/(4))|[1,omega,omega^(2)],[omega,omega^(2),1],[omega^(2),1,omega]|=0,quad (1)/(sqrt(6))| omega=-(1)/(2)+(i sqrt(3))/(2)quad " expen "

Promotional Banner

Similar Questions

Explore conceptually related problems

(1-omega +omega^2)(1+omega-omega^2)=4

(1-omega+omega^(2))(1+omega-omega^(2))=4

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

Find the value of : |(1,omega^3,omega^2),(omega^3,1,omega),(omega^2,omega,1)|

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

|{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|=0 where omega is an imaginary cube root of unity.

If omega=-(1)/(2)+i (sqrt(3))/(2) , the value of [[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]] is

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0