Home
Class 12
MATHS
Let z=costheta+isintheta . Then , the va...

Let `z=costheta+isintheta` . Then , the value of `sum_(m=1)^(15)I m(z^(2m-1))` at `theta=2^0` is `1/(sin2^0)` (b) `1/(3sin2^0)` `1/(2sin2^0)` (d) `1/(4sin2^0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=cos theta+isintheta . Then the value of sum_(m-1)^(15)Im(z^(2m)-1) at theta=2^(@) is

Let z=costheta+isintheta . Then the value of sum_(m=1)^15 Im(z^(2m-1)) at theta=2^@ is:

Let z=costheta +i sintheta . Then, the value of sum_(m=1)^15Imz^(2m-1) at theta = 2^@ is

Let z=costheta+isintheta . Then the value of sum_(m->1-15)Img(z^(2m-1)) at theta=2^@ is:

Let z=costheta+isintheta . Then the value of sum_(m->1-15)Img(z^(2m-1)) at theta=2^@ is:

Let z=cos theta+i sin theta then the value of sum_(m=1)^(30)Im(z^(2m-1)) at theta=2^(@) is.

Let z=cos theta+i sin theta. Then the value of sum_(m rarr1-15)Img(z^(2m-1)) at theta=2^(@) is: 1.(1)/(sin2^(@)) 2.(1)/(3sin2^(@))3*(1)/(sin2^(@))4*(1)/(4sin2^(@))

(b) sin^(2)theta-(1)/(2)sin theta=0

If cos theta + cos^2 theta = 1, then value of sin^2 theta + sin^4 theta is (a) -1 (c) 0 (c) 1 (d) 2