Home
Class 11
MATHS
lim {x->oo} 2^(x-1) tan(a/(2^x))...

`lim {x->oo} 2^(x-1) tan(a/(2^x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(x rarr oo) 2^(x-1)(sin (pi/(2^(x)))+tan(pi/(2^(x)))) is equal to

lim_ (x rarr oo) (2 ^ (x) tan ((a) / (2 ^ (x)))) / (x * sin ((1) / (x)))

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

Lim_(x->oo) (2x - 1)/(x + 2)

lim_(x->oo) (e^(1/x^2)-1)/(2tan^-1(x^2)-pi) is equal to (a) 1 (b) -1 (c) 1/2 (d) -1/2

lim_(x rarr-oo)(x^(2)*tan((1)/(x)))/(sqrt(8x^(2)+7x+1)) is

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is