Home
Class 12
MATHS
" For "n in N," let "a(n)=sum(k=1)^(n)2k...

" For "n in N," let "a_(n)=sum_(k=1)^(n)2k" and "b_(n)=sum_(k=1)^(n)(2k-1)." Then "lim_(n rarr oo)(sqrt(a_(n))-sqrt(b_(n)))" is equal to- "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

If S_(n),=sum_(k=1)^(n)a_(k) and lim_(n rarr oo)a_(n)=a, then lim_(n rarr oo),(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k)) is equal to

Let a_(n)=sum_(k=1)^(n)tan^(-1)((1)/(k^(2)+k+1));n>=1 ,then lim_(n rarr oo)n^(2)(e^(a_(n)+1)-e^(a_(n)))=

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

For k in N, let b_(k)=int_(1)^(e)(1)/((k+log x)(k+1+log x))(dx)/(x) and a_(n)=sum_(k=1)^(n)b_(k) Then

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then