Home
Class 11
MATHS
[6x-20y+164=r^(2)and(x-4)^(2)+(y-7)^(2)=...

[6x-20y+164=r^(2)and(x-4)^(2)+(y-7)^(2)=36" intersect at two di "],[[" (2) "111," (4) "0

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x^(2)+y^(2)-16x-20y+164=r^(2) and (x-4)^(2)+(y-7)^(2)=36 intersect at two points then (a) 1 11(d)0

If the circles x^2+y^2-16x-20y+164=r^2 and (x-4)^2+(y-7)^2=36 intersect at two points then (a) 1ltrlt11 (b) r=11 (c) rgt11 (d) 0ltrlt1

If the circles x^2+y^2-16x-20y+164=r^2 and (x-4)^2+(y-7)^2=36 intersect at two points then (a) 1ltrlt11 (b) r=11 (c) rgt11 (d) 0ltrlt1

If the circles x^2+y^2-16x-20y+164=r^2 and (x-4)^2+(y-7)^2=36 intersect at two points then (a) 1ltrlt11 (b) r=11 (c) rgt11 (d) 0ltrlt1

If the circles x^(2)+y^(2) +5Kx+2y + K=0 and2(x^(2)+y^(2))+2Kx +3y-1=0, (KinR) , intersect at the points P and Q, then the line 4x + 5y - K = 0 passes through P and Q, for x^(2)+y^(2)-16x-20y+164=r^(2) and (x-4)^(2)+(y-7)^(2) = 36 intersect at two distinct points, then

The two circles x^(2)+y^(2)=r^(2) and x^(2)+y^(2)-10x+16=0 intersect at two distinct points.Then

If the circles (x-1)^(2)+(y-3)^(2)=4r^(2) and x^(2)+y^(2)-8x+2y+8=0 intersect in two distinct points, then show that 1ltrlt 4 .

If x^(2)+y^(2)-2x-6y+10-r^(2)=0 and x^(2)+y^(2)+6x=0 intersect orthogonal to each other,then the value of r

The two lines 2x+y-6=0 and 4x-2y-4=0 intersect at……

The two circles x^2+ y^2=r^2 and x^2+y^2-10x +16=0 intersect at two distinct points. Then